论文标题

部分可观测时空混沌系统的无模型预测

Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation

论文作者

Jang, JoonHo, Na, Byeonghu, Shin, DongHyeok, Ji, Mingi, Song, Kyungwoo, Moon, Il-Chul

论文摘要

开放型域适应(OSDA)假设目标域包含未知类,这些类未发现在源域中。现有的域对抗学习方法不适合OSDA,因为分布与$ \ textit {unknown} $类匹配会导致负转移。以前的OSDA方法仅利用$ \ textit {已知} $ class,重点是匹配源和目标分布。但是,此$ \ textIt {已知} $ - 只有匹配可能无法学习目标 - $ \ textit {unknown} $特征空间。因此,我们提出了不知名的域对抗学习(UADAL),$ \ textit {aligns} $ source和target-$ \ textit {已知{已知{已知{已知{已知{已知{nower} $分发,同时$ \ textit {segregating} $ target-$ \ $ \ $ \ textit {Unknown} $ newnsnew} $在该功能中的分配。我们提供了有关提出的$ \ textit {unknown-ware} $特征对齐的优化状态的理论分析,因此我们可以保证$ \ textit {Alignment} $和$ \ textit {segregation} $理论。从经验上讲,我们在基准数据集上评估Uadal,这表明Uadal通过报告最先进的性能来优于其他具有更好特征对齐方式的方法。

Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with $\textit{unknown}$ classes leads to negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing $\textit{known}$ classes. However, this $\textit{known}$-only matching may fail to learn the target-$\textit{unknown}$ feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which $\textit{aligns}$ the source and the target-$\textit{known}$ distribution while simultaneously $\textit{segregating}$ the target-$\textit{unknown}$ distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed $\textit{unknown-aware}$ feature alignment, so we can guarantee both $\textit{alignment}$ and $\textit{segregation}$ theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting state-of-the-art performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源