论文标题
在最小2-(边)连接的图形的光谱半径上
On the spectral radius of minimally 2-(edge)-connected graphs with given size
论文作者
论文摘要
如果它是$ k $连接的($ k $ - edge-edgened),则图是最小的$ k $连接($ k $ - edge-engected),并且删除任意选择的边缘总是会留下一个不是$ k $连接的图($ k $ - $ - edge-engened)。 Mader确定了最低限度的$ K $连接图的经典结果,他确定了1937年最小$ k $连接的高秩序图的极值。在本文中,我们确定了给定尺寸的最小$ 2 $连接($ 2 $ - 边缘连接)图的最大光谱半径,此外,还确定了相应的极端图。
A graph is minimally $k$-connected ($k$-edge-connected) if it is $k$-connected ($k$-edge-connected) and deleting arbitrary chosen edge always leaves a graph which is not $k$-connected ($k$-edge-connected). A classic result of minimally $k$-connected graph is given by Mader who determined the extremal size of a minimally $k$-connected graph of high order in 1937. Naturally, for a fixed size of a minimally $k$-(edge)-connected graphs, what is the extremal spectral radius? In this paper, we determine the maximum spectral radius for the minimally $2$-connected ($2$-edge-connected) graphs of given size, moreover the corresponding extremal graphs are also determined.