论文标题
Pequenet:具有适应性和基于注意力的网络的压缩视频的感知质量增强
PeQuENet: Perceptual Quality Enhancement of Compressed Video with Adaptation- and Attention-based Network
论文作者
论文摘要
在本文中,我们提出了一个生成的对抗网络(GAN)框架,以增强压缩视频的感知质量。我们的框架包括单个模型中对不同量化参数(QP)的注意和适应。注意模块利用了可以捕获和对齐连续框架之间的长距离相关性的全球接收场,这可能有益于提高视频的感知质量。要增强的框架与其相邻的框架一起馈入深网,并在第一阶段的特征中提取不同深度的特征。然后提取的特征被馈入注意力块以探索全局的时间相关性,然后进行一系列上采样和卷积层。最后,由QP条件适应模块处理所得的功能,该模块利用相应的QP信息。这样,单个模型可用于增强对各种QP的适应性,而无需针对每个QP值的多个模型,而具有相似的性能。实验结果表明,与最先进的压缩视频质量增强算法相比,所提出的PEQUENET的表现出色。
In this paper we propose a generative adversarial network (GAN) framework to enhance the perceptual quality of compressed videos. Our framework includes attention and adaptation to different quantization parameters (QPs) in a single model. The attention module exploits global receptive fields that can capture and align long-range correlations between consecutive frames, which can be beneficial for enhancing perceptual quality of videos. The frame to be enhanced is fed into the deep network together with its neighboring frames, and in the first stage features at different depths are extracted. Then extracted features are fed into attention blocks to explore global temporal correlations, followed by a series of upsampling and convolution layers. Finally, the resulting features are processed by the QP-conditional adaptation module which leverages the corresponding QP information. In this way, a single model can be used to enhance adaptively to various QPs without requiring multiple models specific for every QP value, while having similar performance. Experimental results demonstrate the superior performance of the proposed PeQuENet compared with the state-of-the-art compressed video quality enhancement algorithms.