论文标题
cramér距离和圆的离散图扩展地图II:仿真
Cramér distance and discretizations of circle expanding maps II: simulations
论文作者
论文摘要
本文介绍了一些数值实验,这些实验与ARXIV中扩展地图的离散化的千古短期行为的理论研究有关:2206.07991 [Math.ds]。 我们的目的是确定通过Dynamics $ f $ the Lebesgue度量的$ t $ the theCramér距离的演变的现象。基于数值模拟,我们提出了一些关于数值截断的影响的猜想,从沿着字符的角度来看。
This paper presents some numerical experiments in relation with the theoretical study of the ergodic short-term behaviour of discretizations of expanding maps done in arXiv:2206.07991 [math.DS]. Our aim is to identify the phenomena driving the evolution of the Cramér distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid. Based on numerical simulations we propose some conjectures on the effects of numerical truncation from the ergodic viewpoint.