论文标题

使用统计计算机学习对原子模拟的连续性字段的自动分析

Automated analysis of continuum fields from atomistic simulations using statistical machine learning

论文作者

Prakash, Aruna, Sandfeld, Stefan

论文摘要

分子动力学/静态类型的原子模拟经常用于研究小规模的可塑性。当现代模拟使用数万到数亿个原子进行,并在定期间隔编写这些配置的快照以进行进一步分析。材料行为的连续尺度构成模型可以从原子量表上的信息中受益,尤其是在变形机制,总应变的适应以及单个晶粒中应力和应变场的分配。在这项工作中,我们使用统计数据挖掘和机器学习算法来开发一种方法,以使原子模拟中的连续性场变量分析自动化。我们专注于三个重要的场变量:总应变,弹性应变和微功能。我们的结果表明,单个晶粒中的弹性应变表现出单峰对数正态分布,而总应变和微连续性场则证明了多模式分布。用高斯混合模型鉴定了总应变分布中的峰,并提出了规避过度拟合问题的方法。随后,我们根据晶粒中的变形机制来评估所鉴定的峰,例如,有助于量化单个变形机制负责的应变。在所有晶粒上分布的总体统计数据是更高规模模型的重要输入,最终也有助于定量讨论信息传输到现象学模型的含义。

Atomistic simulations of the molecular dynamics/statics kind are regularly used to study small scale plasticity. Contemporary simulations are performed with tens to hundreds of millions of atoms, with snapshots of these configurations written out at regular intervals for further analysis. Continuum scale constitutive models for material behavior can benefit from information on the atomic scale, in particular in terms of the deformation mechanisms, the accommodation of the total strain and partitioning of stress and strain fields in individual grains. In this work we develop a methodology using statistical data mining and machine learning algorithms to automate the analysis of continuum field variables in atomistic simulations. We focus on three important field variables: total strain, elastic strain and microrotation. Our results show that the elastic strain in individual grains exhibits a unimodal log-normal distribution, whilst the total strain and microrotation fields evidence a multimodal distribution. The peaks in the distribution of total strain are identified with a Gaussian mixture model and methods to circumvent overfitting problems are presented. Subsequently, we evaluate the identified peaks in terms of deformation mechanisms in a grain, which e.g., helps to quantify the strain for which individual deformation mechanisms are responsible. The overall statistics of the distributions over all grains are an important input for higher scale models, which ultimately also helps to be able to quantitatively discuss the implications for information transfer to phenomenological models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源