论文标题

球体上的低能点和真实的投影平面

Low energy points on the sphere and the real projective plane

论文作者

Beltrán, Carlos, Etayo, Ujué, López-Gómez, Pedro R.

论文摘要

我们在$ \ mathbb {s}^2 $上介绍了一个点的概括,钻石合奏,包含$ \ mathbb {s}^2 $上的$ n $点的集合,所有$ n \ in \ mathbb {n} $中的$ n \ ins $ n \ a的$ n \。我们将此构造扩展到真实的投影平面$ \ Mathbb {Rp}^2 $,并在最后一个空间上获得了绿色和对数能量的上限和下限。

We present a generalization of a family of points on $\mathbb{S}^2$, the Diamond ensemble, containing collections of $N$ points on $\mathbb{S}^2$ with very small logarithmic energy for all $N\in\mathbb{N}$. We extend this construction to the real projective plane $\mathbb{RP}^2$ and we obtain upper and lower bounds with explicit constants for the Green and logarithmic energy on this last space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源