论文标题
根部三合会,而不是对,可能解释了次磁场对神经发生的影响
Radical triads, not pairs, may explain effects of hypomagnetic fields on neurogenesis
论文作者
论文摘要
已经发现,成年海马神经发生和海马依赖性认知已被发现受到低磁场暴露的不利影响。在没有地磁场的情况下,这种效应与减少活性氧的效果同意。最近的一项理论研究表明,在激进对机理的框架中对这种现象的机械解释。根据该模型,出生在单线旋转构型中的黄素蛋白氧化激素对经历了磁场依赖性旋转动力学,因此随着施加的磁场的降低,该对的重组得到了增强。该模型具有两个表面上的弱点:a)单重态初始状态的假设是不可调节的,而已知的反应途径产生了这种激进对,并且b)该模型忽略了自由超级氧化物的快速自旋松弛,从而废除了地磁/高磁场中的任何磁敏感性。我们在这里建议,基于根部三合会的模型和次级自由基清除反应的假设原则上可以解释这种现象而没有不自然的假设,从而提供了对生物学中低磁场效应的连贯解释。
Adult hippocampal neurogenesis and hippocampus-dependent cognition in mice have been found to be adversely affected by hypomagnetic field exposure. The effect concurred with a reduction of reactive oxygen species in the absence of the geomagnetic field. A recent theoretic study suggests a mechanistic interpretation of this phenomenon in the framework of the Radical Pair Mechanism. According to this model, a flavin-superoxide radical pair, born in the singlet spin configuration, undergoes magnetic field-dependent spin dynamics such that the pair's recombination is enhanced as the applied magnetic field is reduced. This model has two ostensible weaknesses: a) the assumption of a singlet initial state is irreconcilable with known reaction pathways generating such radical pairs, and b) the model neglects the swift spin relaxation of free superoxide, which abolishes any magnetic sensitivity in geomagnetic/hypomagnetic fields. We here suggest that a model based on a radical triad and the assumption of a secondary radical scavenging reaction can, in principle, explain the phenomenon without unnatural assumptions, thus providing a coherent explanation of hypomagnetic field effects in biology.