论文标题

卡拉比YAU指标的非唯一性,其体积最大增长

Nonuniqueness of Calabi-Yau metrics with maximal volume growth

论文作者

Chiu, Shih-Kai

论文摘要

我们在$ \ mathbf {c}^3 $渐近地构建了一个不等的calabi-yau指标,因为这些指标中的任何两个都不能通过缩放和生物敏感性相关。这提供了Calabi-yau指标家族渐近锥体在无穷大的固定切线渐变锥的第一个例子,同时使基础的复杂结构保持固定。我们提出了对SzékelyHidi的猜想的改进,以解决此类指标的分类。

We construct a family of inequivalent Calabi-Yau metrics on $\mathbf{C}^3$ asymptotic to $\mathbf{C} \times A_2$ at infinity, in the sense that any two of these metrics cannot be related by a scaling and a biholomorphism. This provides the first example of families of Calabi-Yau metrics asymptotic to a fixed tangent cone at infinity, while keeping the underlying complex structure fixed. We propose a refinement of a conjecture of Székelyhidi addressing the classification of such metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源