论文标题

失误的奇异性,苛刻和纠缠

Lapse singularities, caustics and entanglement

论文作者

Guralnik, Zachary

论文摘要

我们研究了差异不变量子理论中波功能的衍射灾难,为此,$ \ hathψ= 0 $。这些波函数可以用综合变量变量$ n $中的循环的整合表示。 Integrand $ \ exp(i {\ Mathbb s}(n))$在有限的$ n $和Infinity的有限值时可能具有多个基本奇点。波动方程的绿色函数和解的基集由连接这些奇异性的Lefschetz Thimbles表示。显示有限$ n $奇异性与$ a_ {n \ ge 3} $ clustics直接相关。我们提供了一个类似于Halliwell和Myers构建的Minisuperspace宇宙学模型的示例,我们为其添加了标量字段。我们表明,与编辑$ d \ ge 2 $相对于其展开的自由度的分区表现出强烈的纠缠。如果展开的方向对应于惠勒 - 戴维特方程溶液中的物理时钟,则腐蚀性与量子测量相似。 rényi纠缠熵$ {\ cal r} _n $用超过$ 2N $ lapse变量$ n_i $表示。将Integrand编写为$ \ exp(iγ)$,我们发现$ \ exp(i {\ mathbb s})$的有限$ n $基本奇异性被$ \ exp(iγ)$ at Cycllacid CACCATIC $ N_I = N_I = N_J $的非必需的奇异性代替了Lefschetz thimble evade evade evade。集成周期所属的相对同源类是链接的较高维度变体。

We study diffraction catastrophes of wave functions in diffeomorphism invariant quantum theories, for which $\hat HΨ=0$. These wave functions can be represented in terms of integrations over cycles in a complexified lapse variable $N$. The integrand $\exp(i{\mathbb S}(N))$ may have multiple essential singularities at finite values of $N$ and at infinity. A basis set for Greens functions and solutions of the wave equation is represented by Lefschetz thimbles connecting these singularities. The finite $N$ singularities are shown to be directly related to $A_{n\ge 3}$ caustics. We give an example similar to a minisuperspace cosmological model constructed by Halliwell and Myers, to which we add a scalar field. We show that caustics with codimension $d\ge 2$ exhibit strong entanglement with respect to partitions of their unfolding degrees of freedom. If an unfolding direction corresponds to a physical clock in a solution of the Wheeler-DeWitt equation, the caustic bears some resemblance to a quantum measurement. The Rényi entanglement entropy ${\cal R}_n$ is expressed in terms of integrals over $2n$ lapse variables $N_i$. Writing the integrand as $\exp(iΓ)$, we find that the finite $N$ essential singularities of $\exp(i{\mathbb S})$ are replaced with non-essential singularities of $\exp(iΓ)$ at cyclically related $N_i = N_j$ , which the Lefschetz thimbles evade. The relative homology classes to which the integration cycles belong are higher dimensional variants of links.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源