论文标题

重新构架的GE具有神经条件依赖度量

Reframed GES with a Neural Conditional Dependence Measure

论文作者

Shen, Xinwei, Zhu, Shengyu, Zhang, Jiji, Hu, Shoubo, Chen, Zhitang

论文摘要

在非参数设置中,因果结构通常仅在马尔可夫等效性上可识别,而出于因果推断的目的,学习马尔可夫等效类(MEC)的图形表示很有用。在本文中,我们重新访问了贪婪的等效搜索(GES)算法,该算法被广泛引用为一种基于分数的算法,用于学习基本因果结构的MEC。我们观察到,为了使GES算法在非参数设置中保持一致,不必设计评估图表的评分度量。取而代之的是,足以插入一致的有条件依赖度量的估计器来指导搜索。因此,我们提出了GES算法的重塑,该算法比基于标准分数的版本更灵活,并且很容易将自己带入非参数设置,并具有一般的条件依赖性度量。此外,我们提出了一种神经条件依赖性(NCD)度量,该措施利用深神网络的表达能力以非参数方式表征有条件独立性。我们在标准假设和使用我们的NCD估计器决定条件独立性的一致性下建立了重新构架GES算法的最佳性。这些结果共同证明了拟议的方法是合理的。实验结果证明了我们方法在因果发现中的有效性,以及使用我们的NCD度量而不是基于内核的措施的优势。

In a nonparametric setting, the causal structure is often identifiable only up to Markov equivalence, and for the purpose of causal inference, it is useful to learn a graphical representation of the Markov equivalence class (MEC). In this paper, we revisit the Greedy Equivalence Search (GES) algorithm, which is widely cited as a score-based algorithm for learning the MEC of the underlying causal structure. We observe that in order to make the GES algorithm consistent in a nonparametric setting, it is not necessary to design a scoring metric that evaluates graphs. Instead, it suffices to plug in a consistent estimator of a measure of conditional dependence to guide the search. We therefore present a reframing of the GES algorithm, which is more flexible than the standard score-based version and readily lends itself to the nonparametric setting with a general measure of conditional dependence. In addition, we propose a neural conditional dependence (NCD) measure, which utilizes the expressive power of deep neural networks to characterize conditional independence in a nonparametric manner. We establish the optimality of the reframed GES algorithm under standard assumptions and the consistency of using our NCD estimator to decide conditional independence. Together these results justify the proposed approach. Experimental results demonstrate the effectiveness of our method in causal discovery, as well as the advantages of using our NCD measure over kernel-based measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源