论文标题
基于差异的最低差异基于对抗性隐私保护图像生成
Minimum Noticeable Difference based Adversarial Privacy Preserving Image Generation
论文作者
论文摘要
发现深度学习模型很容易受到对抗性示例的影响,因为在深度学习模型的输入中,扰动很小,可能会引起错误的预测。对抗图像生成的大多数现有作品都试图为大多数模型实现攻击,而其中很少有人努力确保对抗性实例的感知质量。高质量的对手示例对许多应用很重要,尤其是保留隐私。在这项工作中,我们基于最小明显差异(MND)概念开发了一个框架,以生成对对抗性隐私的保留图像,这些图像与干净的图像具有最小的感知差异,但能够攻击深度学习模型。为了实现这一目标,首先提出了对抗性损失,以使深度学习模型成功地被对抗性图像攻击。然后,通过考虑摄动和扰动引起的结构和梯度变化的大小来开发感知质量的损失,该损失旨在为对抗性图像生成保持高知觉质量。据我们所知,这是基于MND概念的隐私保存概念来探索质量保护的对抗形象生成的第一项工作。为了在感知质量方面评估其性能,在这项工作中,通过建议的方法和几种锚方法对图像分类和面部识别的深层模型进行了测试。广泛的实验结果表明,所提出的MND框架能够生成具有明显改善的性能指标(例如PSNR,SSIM和MOS)的对抗图像,而不是用锚定方法生成的对抗性图像。
Deep learning models are found to be vulnerable to adversarial examples, as wrong predictions can be caused by small perturbation in input for deep learning models. Most of the existing works of adversarial image generation try to achieve attacks for most models, while few of them make efforts on guaranteeing the perceptual quality of the adversarial examples. High quality adversarial examples matter for many applications, especially for the privacy preserving. In this work, we develop a framework based on the Minimum Noticeable Difference (MND) concept to generate adversarial privacy preserving images that have minimum perceptual difference from the clean ones but are able to attack deep learning models. To achieve this, an adversarial loss is firstly proposed to make the deep learning models attacked by the adversarial images successfully. Then, a perceptual quality-preserving loss is developed by taking the magnitude of perturbation and perturbation-caused structural and gradient changes into account, which aims to preserve high perceptual quality for adversarial image generation. To the best of our knowledge, this is the first work on exploring quality-preserving adversarial image generation based on the MND concept for privacy preserving. To evaluate its performance in terms of perceptual quality, the deep models on image classification and face recognition are tested with the proposed method and several anchor methods in this work. Extensive experimental results demonstrate that the proposed MND framework is capable of generating adversarial images with remarkably improved performance metrics (e.g., PSNR, SSIM, and MOS) than that generated with the anchor methods.