论文标题

不确定性感知的评估时间序列分类,用于在线手写识别的域转移

Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift

论文作者

Klaß, Andreas, Lorenz, Sven M., Lauer-Schmaltz, Martin W., Rügamer, David, Bischl, Bernd, Mutschler, Christopher, Ott, Felix

论文摘要

对于许多应用,分析机器学习模型的不确定性是必不可少的。尽管不确定性量化(UQ)技术的研究非常先进,但对于计算机视觉应用程序,研究的UQ方法的研究较少。在本文中,我们专注于在线手写识别的模型,这是一种特定类型的时空数据。数据是从传感器增强笔的目标,其目标是对书面字符进行分类的目标。我们基于两种贝叶斯推论,平均高斯(赃物)和深层合奏的两种突出技术,对两种突出的技术进行广泛的评估(数据)和认知(模型)UQ。在对模型的更好理解后,UQ技术可以在组合右手和左撇子作家(一个代表性不足的组)时检测分布数据和域的变化。

For many applications, analyzing the uncertainty of a machine learning model is indispensable. While research of uncertainty quantification (UQ) techniques is very advanced for computer vision applications, UQ methods for spatio-temporal data are less studied. In this paper, we focus on models for online handwriting recognition, one particular type of spatio-temporal data. The data is observed from a sensor-enhanced pen with the goal to classify written characters. We conduct a broad evaluation of aleatoric (data) and epistemic (model) UQ based on two prominent techniques for Bayesian inference, Stochastic Weight Averaging-Gaussian (SWAG) and Deep Ensembles. Next to a better understanding of the model, UQ techniques can detect out-of-distribution data and domain shifts when combining right-handed and left-handed writers (an underrepresented group).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源