论文标题
通过分配对比度拆卸学习公平代表
Learning Fair Representation via Distributional Contrastive Disentanglement
论文作者
论文摘要
学习公平代表性对于实现公平或偏见敏感信息至关重要。大多数现有的作品都依靠对抗表示学习将一些不变性注入代表。但是,已知对抗性学习方法受到相对不稳定的培训的损失,这可能会损害公平性和代表性预测之间的平衡。我们提出了一种新方法,通过分布对比度变异自动编码器(Farconvae)学习公平表示,该方法诱导潜在空间将其分解为敏感和非敏感部分。我们首先构建具有不同敏感属性但具有相同标签的观测值。然后,Farconvae强制执行每个非敏感潜在的潜在,而敏感的潜在潜在的潜伏期彼此之间的距离也很远,并且还远离非敏感的潜在通过对比它们的分布。我们提供了一种由高斯和Student-T内核动机的新型对比损失,用于通过理论分析进行分配对比学习。此外,我们采用新的掉期重建损失来进一步提高分离。 Farconvae在公平性,预处理的模型偏差以及来自各种模式(包括表格,图像和文本)的域概括任务方面表现出卓越的性能。
Learning fair representation is crucial for achieving fairness or debiasing sensitive information. Most existing works rely on adversarial representation learning to inject some invariance into representation. However, adversarial learning methods are known to suffer from relatively unstable training, and this might harm the balance between fairness and predictiveness of representation. We propose a new approach, learning FAir Representation via distributional CONtrastive Variational AutoEncoder (FarconVAE), which induces the latent space to be disentangled into sensitive and nonsensitive parts. We first construct the pair of observations with different sensitive attributes but with the same labels. Then, FarconVAE enforces each non-sensitive latent to be closer, while sensitive latents to be far from each other and also far from the non-sensitive latent by contrasting their distributions. We provide a new type of contrastive loss motivated by Gaussian and Student-t kernels for distributional contrastive learning with theoretical analysis. Besides, we adopt a new swap-reconstruction loss to boost the disentanglement further. FarconVAE shows superior performance on fairness, pretrained model debiasing, and domain generalization tasks from various modalities, including tabular, image, and text.