论文标题
背景信息对于超出分销概括的重要性
The Importance of Background Information for Out of Distribution Generalization
论文作者
论文摘要
医学图像分类中的域概括是将可信赖的机器学习部署在医疗保健中的重要问题。我们发现,相对于经验风险最小化(ERM)的标准基线,利用地面真相异常分段来控制特征归因(OOD)的现有方法的方法较差(OOD)。我们研究了图像的哪些区域对于医学图像分类很重要,并表明背景的一部分(不符合异常分割)提供了有用的信号。然后,我们开发一个新的特定任务面具,涵盖所有相关区域。利用这种新的分割面膜可显着提高OOD测试集上现有方法的性能。为了获得比ERM更好的概括结果,我们发现除了使用这些特定任务的掩码外,还必须扩大训练数据大小。
Domain generalization in medical image classification is an important problem for trustworthy machine learning to be deployed in healthcare. We find that existing approaches for domain generalization which utilize ground-truth abnormality segmentations to control feature attributions have poor out-of-distribution (OOD) performance relative to the standard baseline of empirical risk minimization (ERM). We investigate what regions of an image are important for medical image classification and show that parts of the background, that which is not contained in the abnormality segmentation, provides helpful signal. We then develop a new task-specific mask which covers all relevant regions. Utilizing this new segmentation mask significantly improves the performance of the existing methods on the OOD test sets. To obtain better generalization results than ERM, we find it necessary to scale up the training data size in addition to the usage of these task-specific masks.