论文标题

无监督的代表学学习分配变化的稳健性如何?

How Robust is Unsupervised Representation Learning to Distribution Shift?

论文作者

Shi, Yuge, Daunhawer, Imant, Vogt, Julia E., Torr, Philip H. S., Sanyal, Amartya

论文摘要

机器学习算法对分布转移的鲁棒性主要在监督学习(SL)的背景下讨论。因此,缺乏对从无监督的方法中学到的表示的鲁棒性的见解,例如自我监督的学习(SSL)和基于自动编码器的算法(AE)对分布的转移。我们认为,无监督算法的输入驱动的目标导致表示比相比SL的目标驱动目标更强大的分配移动。我们通过广泛评估SSL和AE在合成和现实的分布移位数据集上的性能来验证这一点。在观察到用于分类本身的线性层可能易于伪造相关性,我们使用对少量分布(OOD)数据训练的线性头来评估表示形式,以隔离线性头部的鲁棒性。我们还开发了具有可调节程度的分配程度的现有现实域概括数据集的“可控”版本。这使我们能够研究多功能但现实的分配变化条件下不同学习算法的鲁棒性。我们的实验表明,在各种极端和现实的分布变化下,从无监督的学习算法中学到的表示,比SL概括了。

The robustness of machine learning algorithms to distributions shift is primarily discussed in the context of supervised learning (SL). As such, there is a lack of insight on the robustness of the representations learned from unsupervised methods, such as self-supervised learning (SSL) and auto-encoder based algorithms (AE), to distribution shift. We posit that the input-driven objectives of unsupervised algorithms lead to representations that are more robust to distribution shift than the target-driven objective of SL. We verify this by extensively evaluating the performance of SSL and AE on both synthetic and realistic distribution shift datasets. Following observations that the linear layer used for classification itself can be susceptible to spurious correlations, we evaluate the representations using a linear head trained on a small amount of out-of-distribution (OOD) data, to isolate the robustness of the learned representations from that of the linear head. We also develop "controllable" versions of existing realistic domain generalisation datasets with adjustable degrees of distribution shifts. This allows us to study the robustness of different learning algorithms under versatile yet realistic distribution shift conditions. Our experiments show that representations learned from unsupervised learning algorithms generalise better than SL under a wide variety of extreme as well as realistic distribution shifts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源