论文标题
如Vimos Ultra-Deep调查所示
Metal content of the circumgalactic medium around star-forming galaxies at z $\sim$ 2.6 as revealed by the VIMOS Ultra-Deep Survey
论文作者
论文摘要
周边培养基(CGM)是发生大规模流出和吸收星系之间的相互作用的位置。在海洋乳酸和白术之间流动的不同电离状态的金属受大银河流出和低电离状态流动气体的影响。观察性研究其空间分布及其与星系特性的关系可能会对星系形成和进化的模型产生重要限制。为了提供有关星形星系的环境空间分布的新见解,我们从VIMOS Ultra Deep调查中选择了238个关闭对的样本,价格为$ 1.5 <z <z <4.5 $($ \ langle z \ rangle \ sim $ 2.6)。然后,我们通过$背景$星系的共同添加光谱生成复合光谱,这些光谱在CGM上提供不同的视力线,以检查位于这些星系周围的气体的空间分布,并研究低和高离子化吸收特征与不同星系特性的强度之间的可能相关性。我们检测到C II,SI II,SI IV和C IV),直至分离$ \ langle b \ rangle = $ 172 kpc和146 kpc。我们的$ W_ {0} $ radial配置文件表明,对于产生这些吸收的CGM气体含量的潜在红移演变。我们发现C II和C IV之间的相关性与恒星形成速率,恒星质量和趋势的相关性与有效半径和方位角估计的星系大小相关。与恒星形成的星系相比,具有高恒星形成速率的星系表现出更强的C IV吸收。这些结果可以通过更强的流出,较软的辐射场无法离子化高电离状态线或银河喷泉场景,其中从先前的恒星形成发作中弹出金属富含金属的气体倒流回银河系。
The circumgalactic medium (CGM) is the location where the interplay between large-scale outflows and accretion onto galaxies occurs. Metals in different ionization states flowing between the circumgalactic and intergalactic mediums are affected by large galactic outflows and low-ionization state inflowing gas. Observational studies on their spatial distribution and their relation with galaxy properties may provide important constraints on models of galaxy formation and evolution. To provide new insights into the spatial distribution of the circumgalactic of star-forming galaxies, we select a sample of 238 close pairs at $1.5 < z <4.5$ ($\langle z\rangle\sim$2.6) from the VIMOS Ultra Deep Survey. We then generate composite spectra by co-adding spectra of $background$ galaxies that provide different sight-lines across the CGM to examine the spatial distribution of the gas located around these galaxies and investigate possible correlations between the strength of the low- and high-ionization absorption features with different galaxy properties. We detect C II, Si II, Si IV and C IV) up to separations $\langle b \rangle=$ 172 kpc and 146 kpc. Our $W_{0}$ radial profiles suggest a potential redshift evolution for the CGM gas content producing these absorptions. We find a correlation between C II and C IV with star formation rate, stellar mass and trends with galaxy size estimated by the effective radius and azimuthal angle. Galaxies with high star formation rate show stronger C IV absorptions compared with star-forming galaxies with low SFR and low stellar mass. These results could be explained by stronger outflows, softer radiation fields unable to ionize high-ionization state lines or by the galactic fountain scenario where metal-rich gas ejected from previous star-formation episodes fall back to the galaxy.