论文标题
基于欧洲银行当局使用人工智能的大数据和高级分析应用程序的信托元素对偏见减少贷款筛查模型的基线验证
Baseline validation of a bias-mitigated loan screening model based on the European Banking Authority's trust elements of Big Data & Advanced Analytics applications using Artificial Intelligence
论文作者
论文摘要
我们4相研究项目的目的是测试基于机器学习的贷款筛查应用程序(5D)是否可以检测受到以下限制的不良贷款: b)遵守欧洲银行局和欧盟委员会的可信赖人工智能原则(AI)。所有数据集均已匿名化和假匿名化。在阶段0中,我们选择了总共84个功能的10个BIMOPT功能的子集;在第一阶段,我们培训了5D,以检测从意大利银行提取的历史数据集中的不良贷款,该数据集由2010年至2021年期间关闭的7,289个不良贷款(NPLS)组成;在第二阶段,我们评估了5D在独特的验证数据集上的基线性能,该数据集由截至2021年12月31日,总融资价值为63,763个未偿贷款(表现和不表现),总融资价值超过1,15亿欧元;在第三阶段,我们将监视5年(2023-27)的基线性能,以评估5D系统的前瞻性现实偏见降低和绩效及其在信贷和金融科技机构中的实用性。在基线时,5D在总计1,613中正确检测到1,461张不良贷款(敏感性= 0.91,患病率= 0.0253;,正预测值= 0.19),并且正确分类为55,866,在其他62,150个曝光率中(在其他62,150)中(特定性= 0.90 = 0.90,负预测值= 0.997)。我们的初步结果支持以下假设:基于AI的大数据和高级分析应用程序可以减轻贷款筛查过程中的偏见和改善消费者保护,而不会损害信用风险评估的疗效。需要进一步验证来评估5D信贷和金融科技机构中5D的预期绩效和实用性。
The goal of our 4-phase research project was to test if a machine-learning-based loan screening application (5D) could detect bad loans subject to the following constraints: a) utilize a minimal-optimal number of features unrelated to the credit history, gender, race or ethnicity of the borrower (BiMOPT features); b) comply with the European Banking Authority and EU Commission principles on trustworthy Artificial Intelligence (AI). All datasets have been anonymized and pseudoanonymized. In Phase 0 we selected a subset of 10 BiMOPT features out of a total of 84 features; in Phase I we trained 5D to detect bad loans in a historical dataset extracted from a mandatory report to the Bank of Italy consisting of 7,289 non-performing loans (NPLs) closed in the period 2010-2021; in Phase II we assessed the baseline performance of 5D on a distinct validation dataset consisting of an active portolio of 63,763 outstanding loans (performing and non-performing) for a total financed value of over EUR 11.5 billion as of December 31, 2021; in Phase III we will monitor the baseline performance for a period of 5 years (2023-27) to assess the prospective real-world bias-mitigation and performance of the 5D system and its utility in credit and fintech institutions. At baseline, 5D correctly detected 1,461 bad loans out of a total of 1,613 (Sensitivity = 0.91, Prevalence = 0.0253;, Positive Predictive Value = 0.19), and correctly classified 55,866 out of the other 62,150 exposures (Specificity = 0.90, Negative Predictive Value = 0.997). Our preliminary results support the hypothesis that Big Data & Advanced Analytics applications based on AI can mitigate bias and improve consumer protection in the loan screening process without compromising the efficacy of the credit risk assessment. Further validation is required to assess the prospective performance and utility of 5D in credit and fintech institutions.