论文标题

认证的图形学习

Certified Graph Unlearning

论文作者

Chien, Eli, Pan, Chao, Milenkovic, Olgica

论文摘要

图形结构的数据在实践中无处不在,通常使用图神经网络(GNN)处理。通过采用最近的法律,确保了``被遗忘的权利'',删除图数据的问题已变得非常重要。为了解决该问题,我们介绍了GNNS的\ emph {认证图形}的第一个已知框架。与标准机器学习相反,在处理复杂的图形数据时,出现了新的分析和启发式学位挑战。首先,需要考虑三种不同类型的学习请求,包括节点功能,边缘和节点 - 学习。第二,为了建立可证明的绩效保证,需要解决与传播过程中功能混合相关的挑战。简单的图卷积(SGC)及其广泛的Pagerank(GPR)扩展的示例说明了基本分析,从而为GNN认证的理论基础奠定了理论基础。我们对六个基准数据集的实证研究表明,与完整的重新培训方法和不利用图形信息的方法相比,表现出色的性能复杂性权衡。例如,在Cora数据集上未学习$ 20 \%的节点时,我们的方法仅遭受$ 0.1 \%$ $的测试准确性损失,而与完整的再培训相比,提供了$ 4 $倍的加速。我们的方案还胜过未利用图形信息的学习方法,其测试准确性提高了$ 12 \%$,以相当的时间复杂性。

Graph-structured data is ubiquitous in practice and often processed using graph neural networks (GNNs). With the adoption of recent laws ensuring the ``right to be forgotten'', the problem of graph data removal has become of significant importance. To address the problem, we introduce the first known framework for \emph{certified graph unlearning} of GNNs. In contrast to standard machine unlearning, new analytical and heuristic unlearning challenges arise when dealing with complex graph data. First, three different types of unlearning requests need to be considered, including node feature, edge and node unlearning. Second, to establish provable performance guarantees, one needs to address challenges associated with feature mixing during propagation. The underlying analysis is illustrated on the example of simple graph convolutions (SGC) and their generalized PageRank (GPR) extensions, thereby laying the theoretical foundation for certified unlearning of GNNs. Our empirical studies on six benchmark datasets demonstrate excellent performance-complexity trade-offs when compared to complete retraining methods and approaches that do not leverage graph information. For example, when unlearning $20\%$ of the nodes on the Cora dataset, our approach suffers only a $0.1\%$ loss in test accuracy while offering a $4$-fold speed-up compared to complete retraining. Our scheme also outperforms unlearning methods that do not leverage graph information with a $12\%$ increase in test accuracy for a comparable time complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源