论文标题

广义顶点着色游戏中的实用福利优化:在活动计划中对场地选择的影响

Utilitarian Welfare Optimization in the Generalized Vertex Coloring Games: An Implication to Venue Selection in Events Planning

论文作者

Chen, Zeyi

论文摘要

我们考虑了网络中的一般多代理游戏,即广义顶点着色游戏(G-VCG),这是受到事件计划中场地选择问题的现实应用程序的启发。每种特定机制都会收到对当代着色作业的某些效用,他们将在某些特定的机制下收到最大化自己的实用程序,仅限于本地信息,因此在选择另一种颜色时会自组织。我们的重点是以分散的方式最大程度地提高有关网络累积实用程序的一些实用福利目标功能。首先,我们研究了特殊类别的G-VCG,即相同的偏好VCGS(IP-VCG),该偏好(IP-VCG)通过\ cite {Chaudhuri2008network}恢复了基本工作。我们即使在完全贪婪的政策和完全同步的设置下也揭示了它的收敛性,并在提供的融合速率上有一个随机结合。其次,关于一般的G-VCG,提出了一种基于贪婪的大都市危机策略,使每个代理商使用有限的信息及其在异步设置下的最优性启动,并使用来自常规扰动的Markov流程中的理论证明。在独立同步的环境下,该政策也得到了证明是强大的。第三,本着``强大着色''的精神,在目标功能中包括一个预期的损失术语,以在公用事业和鲁棒性之间取得平衡。该强大福利优化的最佳着色将通过第二阶段的MH-Policy驱动算法得出。进行了模拟实验以展示我们提出的策略的效率。

We consider a general class of multi-agent games in networks, namely the generalized vertex coloring games (G-VCGs), inspired by real-life applications of the venue selection problem in events planning. Certain utility responding to the contemporary coloring assignment will be received by each agent under some particular mechanism, who, striving to maximize his own utility, is restricted to local information thus self-organizing when choosing another color. Our focus is on maximizing some utilitarian-looking welfare objective function concerning the cumulative utilities across the network in a decentralized fashion. Firstly, we investigate on a special class of the G-VCGs, namely Identical Preference VCGs (IP-VCGs) which recovers the rudimentary work by \cite{chaudhuri2008network}. We reveal its convergence even under a completely greedy policy and completely synchronous settings, with a stochastic bound on the converging rate provided. Secondly, regarding the general G-VCGs, a greediness-preserved Metropolis-Hasting based policy is proposed for each agent to initiate with the limited information and its optimality under asynchronous settings is proved using theories from the regular perturbed Markov processes. The policy was also empirically witnessed to be robust under independently synchronous settings. Thirdly, in the spirit of ``robust coloring'', we include an expected loss term in our objective function to balance between the utilities and robustness. An optimal coloring for this robust welfare optimization would be derived through a second-stage MH-policy driven algorithm. Simulation experiments are given to showcase the efficiency of our proposed strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源