论文标题
不确定性下的互动视觉推理
Interactive Visual Reasoning under Uncertainty
论文作者
论文摘要
人类的基本认知能力之一是通过产生假设并通过主动试验来快速解决不确定性。遇到一种新现象,伴随着模棱两可的因果关系,人类对数据做出假设,从观察进行推断,通过实验测试其理论,并纠正命题,如果出现不一致。这些迭代过程持续存在,直到潜在的机制变得清晰。在这项工作中,我们设计了IVRE(发音为“象牙”)环境,用于评估不确定性下人造药物的推理能力。 IVRE是一个互动环境,具有围绕玻璃检测为中心的丰富场景。 IVRE中的代理被置于具有各种模棱两可的动作效应对的环境中,并要求确定每个对象的作用。鼓励他们提出有效,有效的实验,以根据观察结果验证其假设并积极收集新的信息。当解决所有不确定性或消耗最大试验次数时,游戏结束。通过评估IVRE中的现代人工代理,我们注意到与人类相比,当今学习方法明显失败。不确定性下的互动推理能力的这种效率低下,要求在建立类似人类的智能方面进行研究。
One of the fundamental cognitive abilities of humans is to quickly resolve uncertainty by generating hypotheses and testing them via active trials. Encountering a novel phenomenon accompanied by ambiguous cause-effect relationships, humans make hypotheses against data, conduct inferences from observation, test their theory via experimentation, and correct the proposition if inconsistency arises. These iterative processes persist until the underlying mechanism becomes clear. In this work, we devise the IVRE (pronounced as "ivory") environment for evaluating artificial agents' reasoning ability under uncertainty. IVRE is an interactive environment featuring rich scenarios centered around Blicket detection. Agents in IVRE are placed into environments with various ambiguous action-effect pairs and asked to determine each object's role. They are encouraged to propose effective and efficient experiments to validate their hypotheses based on observations and actively gather new information. The game ends when all uncertainties are resolved or the maximum number of trials is consumed. By evaluating modern artificial agents in IVRE, we notice a clear failure of today's learning methods compared to humans. Such inefficacy in interactive reasoning ability under uncertainty calls for future research in building human-like intelligence.