论文标题

监督改编平衡分布概括和分布外检测

Supervision Adaptation Balancing In-distribution Generalization and Out-of-distribution Detection

论文作者

Zhao, Zhilin, Cao, Longbing, Lin, Kun-Yu

论文摘要

在深神经网络中,分布(ID)和分布(OOD)样本之间的差异可能导致\ textit {分布漏洞},这随后可以导致OOD样本的高信心预测。这主要是由于训练过程中没有OOD样本,这无法正确限制网络。为了解决此问题,几种最新的方法包括添加额外的OOD样品进行培训,并使用手动定义的标签分配它们。但是,这种做法可以引入不可靠的标签,对ID分类产生负面影响。分布脆弱性为非IID深度学习带来了关键挑战,该挑战旨在通过平衡ID的概括和OOD检测来实现易于OOD ID的分类。在本文中,我们介绍了一种新颖的\ textit {监督适应}方法,以生成针对OOD样本的自适应监督信息,从而使它们与ID样本更兼容。首先,我们使用共同信息来衡量ID样本及其标签之间的依赖关系,表明可以根据所有类别的负概率表示监督信息。其次,我们通过解决一系列二进制回归问题来研究ID和OOD样本之间的数据相关性,目的是完善监督信息,以实现更明显的可分离ID类别。我们对四个高级网络体系结构,两个ID数据集和11个多元化的OOD数据集进行了广泛的实验,证明了我们的监督适应方法在提高ID分类和OOD检测功能方面的功效。

The discrepancy between in-distribution (ID) and out-of-distribution (OOD) samples can lead to \textit{distributional vulnerability} in deep neural networks, which can subsequently lead to high-confidence predictions for OOD samples. This is mainly due to the absence of OOD samples during training, which fails to constrain the network properly. To tackle this issue, several state-of-the-art methods include adding extra OOD samples to training and assign them with manually-defined labels. However, this practice can introduce unreliable labeling, negatively affecting ID classification. The distributional vulnerability presents a critical challenge for non-IID deep learning, which aims for OOD-tolerant ID classification by balancing ID generalization and OOD detection. In this paper, we introduce a novel \textit{supervision adaptation} approach to generate adaptive supervision information for OOD samples, making them more compatible with ID samples. Firstly, we measure the dependency between ID samples and their labels using mutual information, revealing that the supervision information can be represented in terms of negative probabilities across all classes. Secondly, we investigate data correlations between ID and OOD samples by solving a series of binary regression problems, with the goal of refining the supervision information for more distinctly separable ID classes. Our extensive experiments on four advanced network architectures, two ID datasets, and eleven diversified OOD datasets demonstrate the efficacy of our supervision adaptation approach in improving both ID classification and OOD detection capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源