论文标题

狗袭击:一种新颖的VLBI多尺度成像方法

DoG-HiT: A novel VLBI Multiscale Imaging Approach

论文作者

Müller, Hendrik, Lobanov, Andrei

论文摘要

从很长的基线干涉仪(VLBI)数据中重建图像,并用傅立叶域(UV覆盖)稀疏采样构成了一个不足的反卷积问题。它需要应用可靠的算法,从而最大程度地提取了从所有采样的空间尺度中提取信息,并最大程度地减少了未采样量表对图像质量的影响。我们开发了一种新的多尺度小波反卷积算法,用于稀疏采样的干涉数据,该数据结合了高斯(Dog)小波和硬图像阈值的差异(hit)。基于狗袭击,我们提出了一个多步成像管道,用于分析干涉数据。狗击中通过采用柔性狗小波词典将压缩传感方法应用于成像,该词典旨在平稳地适应紫外线覆盖。它仅最初使用闭合属性作为数据保真度项,并通过振幅保存和总磁通量来保存硬阈值分裂,并执行非平滑型优化。狗撞将计算多分辨率支持作为侧产品。最终的重建是通过自我校准环和成像进行改进的,并仅适用于多分辨率支持。我们证明了使用合成数据的清洁和正则化最大样本(RML)方法制成的图像重建的狗命中和基准性能的稳定性。比较表明,狗击与RML重建达到的超分辨率相匹配,并超过了对清洁达到的扩展发射的敏感性。在干涉数据的成像中配备了配备有灵活的多尺度小波词典的正规化最大似然方法与最新技术凸优化成像算法的性能相匹配,并且需要更少的先验和用户定义的约束。

Reconstructing images from very long baseline interferometry (VLBI) data with sparse sampling of the Fourier domain (uv-coverage) constitutes an ill-posed deconvolution problem. It requires application of robust algorithms maximizing the information extraction from all of the sampled spatial scales and minimizing the influence of the unsampled scales on image quality. We develop a new multiscale wavelet deconvolution algorithm DoG-HiT for imaging sparsely sampled interferometric data which combines the difference of Gaussian (DoG) wavelets and hard image thresholding (HiT). Based on DoG-HiT, we propose a multi-step imaging pipeline for analysis of interferometric data. DoG-HiT applies the compressed sensing approach to imaging by employing a flexible DoG wavelet dictionary which is designed to adapt smoothly to the uv-coverage. It uses closure properties as data fidelity terms only initially and perform non-convex, non-smooth optimization by an amplitude conserving and total flux conserving hard thresholding splitting. DoG-HiT calculates a multiresolution support as a side product. The final reconstruction is refined through self-calibration loops and imaging with amplitude and phase information applied for the multiresolution support only. We demonstrate the stability of DoG-HiT and benchmark its performance against image reconstructions made with CLEAN and Regularized Maximum-Likelihood (RML) methods using synthetic data. The comparison shows that DoG-HiT matches the superresolution achieved by the RML reconstructions and surpasses the sensitivity to extended emission reached by CLEAN. Application of regularized maximum likelihood methods outfitted with flexible multiscale wavelet dictionaries to imaging of interferometric data matches the performance of state-of-the art convex optimization imaging algorithms and requires fewer prior and user defined constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源