论文标题

YouTube-VOS挑战2022的第五位解决方案:视频对象细分

5th Place Solution for YouTube-VOS Challenge 2022: Video Object Segmentation

论文作者

Yang, Wangwang, Su, Jinming, Duan, Yiting, Guo, Tingyi, Luo, Junfeng

论文摘要

视频对象细分(VOS)随着深度学习的兴起取得了重大进展。但是,仍然存在一些棘手的问题,例如,类似的对象很容易混淆,很难找到微小的对象。为了解决这些问题并进一步提高VOS的性能,我们为这项任务提出了一个简单而有效的解决方案。在解决方案中,我们首先分析YouTube-VOS数据集的分布,并通过引入公共静态和视频分割数据集来补充数据集。然后,我们改善了具有不同特征的三个网络架构,并训练多个网络以学习视频中对象的不同特征。之后,我们使用一种简单的方法来集成所有结果,以确保不同模型相互补充。最后,进行了微妙的后处理,以确保具有精确边界的准确视频对象分割。在YouTube-VOS数据集上进行的大量实验表明,所提出的解决方案在YouTube-VOS 2022测试集上以86.1%的总分达到了最先进的性能,这在YouTube-Vos-Vos-Vos-Vos-Vos-Vos-Vos-Vos-Vos-Vos-Vos挑战2022 2022的视频对象细分轨道上排名第五。

Video object segmentation (VOS) has made significant progress with the rise of deep learning. However, there still exist some thorny problems, for example, similar objects are easily confused and tiny objects are difficult to be found. To solve these problems and further improve the performance of VOS, we propose a simple yet effective solution for this task. In the solution, we first analyze the distribution of the Youtube-VOS dataset and supplement the dataset by introducing public static and video segmentation datasets. Then, we improve three network architectures with different characteristics and train several networks to learn the different characteristics of objects in videos. After that, we use a simple way to integrate all results to ensure that different models complement each other. Finally, subtle post-processing is carried out to ensure accurate video object segmentation with precise boundaries. Extensive experiments on Youtube-VOS dataset show that the proposed solution achieves the state-of-the-art performance with an 86.1% overall score on the YouTube-VOS 2022 test set, which is 5th place on the video object segmentation track of the Youtube-VOS Challenge 2022.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源