论文标题

用图神经网络分析Büchi自动机

Analyzing Büchi Automata with Graph Neural Networks

论文作者

Stammet, Christophe, Dotti, Prisca, Ultes-Nitsche, Ulrich, Fischer, Andreas

论文摘要

无限单词上的Büchi自动机提出了许多有趣的问题,并经常用于程序验证和模型检查。 Büchi自动机上的许多问题在计算上很难,这提出了一个问题,如果基于学习的数据驱动分析可能比使用传统算法更有效。由于Büchi自动机可以用图表示,因此图神经网络是这种基于学习的分析的自然选择。在本文中,我们演示了如何使用图形神经网络可靠地预测Büchi自动机的基本属性。

Büchi Automata on infinite words present many interesting problems and are used frequently in program verification and model checking. A lot of these problems on Büchi automata are computationally hard, raising the question if a learning-based data-driven analysis might be more efficient than using traditional algorithms. Since Büchi automata can be represented by graphs, graph neural networks are a natural choice for such a learning-based analysis. In this paper, we demonstrate how graph neural networks can be used to reliably predict basic properties of Büchi automata when trained on automatically generated random automata datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源