论文标题
Geo-ni:光场渲染的几何感知神经插值
Geo-NI: Geometry-aware Neural Interpolation for Light Field Rendering
论文作者
论文摘要
在本文中,我们提出了一个几何感知的神经插值(GEO-NI),用于光场渲染。以前的基于学习的方法要么依赖于神经网络执行直接插值的能力,因此我们将其称为神经插值(NI),或者探索场景几何形状以进行新型视图合成,也称为基于深度图像的渲染(Dibr)。取而代之的是,我们通过使用新颖的Dibr管道来启动NI来结合这两种方法背后的想法。具体而言,提出的GEO-NI首先使用一组深度假设剪切的输入光场执行NI。然后,通过根据不同深度假设下的重建质量分配新的重建成本量来通过分配新的重建成本量来实现DIBR。重建成本被解释为通过沿深度假设的尺寸融合重建的光场来呈现最终输出光场的混合重量。通过结合Ni和Dibr的优势,拟议的地理NI能够在场景几何形状的帮助下以巨大的差异来呈现视图,同时当深度容易含糊不清时,同时还可以重建非陆地效应。各种数据集上的广泛实验证明了所提出的几何学光场渲染框架的出色性能。
In this paper, we present a Geometry-aware Neural Interpolation (Geo-NI) framework for light field rendering. Previous learning-based approaches either rely on the capability of neural networks to perform direct interpolation, which we dubbed Neural Interpolation (NI), or explore scene geometry for novel view synthesis, also known as Depth Image-Based Rendering (DIBR). Instead, we incorporate the ideas behind these two kinds of approaches by launching the NI with a novel DIBR pipeline. Specifically, the proposed Geo-NI first performs NI using input light field sheared by a set of depth hypotheses. Then the DIBR is implemented by assigning the sheared light fields with a novel reconstruction cost volume according to the reconstruction quality under different depth hypotheses. The reconstruction cost is interpreted as a blending weight to render the final output light field by blending the reconstructed light fields along the dimension of depth hypothesis. By combining the superiorities of NI and DIBR, the proposed Geo-NI is able to render views with large disparity with the help of scene geometry while also reconstruct non-Lambertian effect when depth is prone to be ambiguous. Extensive experiments on various datasets demonstrate the superior performance of the proposed geometry-aware light field rendering framework.