论文标题

射频大满贯的数据融合使用可靠的采样

Data Fusion for Radio Frequency SLAM with Robust Sampling

论文作者

Leitinger, Erik, Teague, Bryan, Zhang, Wenyu, Liang, Mingchao, Meyer, Florian

论文摘要

对于各种基本应用,精确的室内定位仍然是一个具有挑战性的问题。解决此问题的一种有希望的方法是在室内环境中从平坦的表面弹起的移动代理和静态物理锚之间交换无线电信号。射频同时定位和映射(RF-SLAM)方法可用于共同估计代理的时间变化位置以及平坦表面的静态位置。关于RF-SLAM方法的最新工作表明,每个表面都可以由单个主虚拟锚(MVA)有效地表示。与此基于MVA的RF-SLAM方法相关的测量模型是高度非线性的。因此,贝叶斯估计依赖于基于抽样的技术。原始的基于MVA的RF-SLAM方法采用常规的“ bootstrap”采样。在具有挑战性的情况下,观察到原始方法可能会收敛到与本地最大值相对应的MVA位置。在本文中,我们通过改进的采样技术介绍了基于MVA的RF-SLAM,该技术在上述挑战性的情况下取得了成功。我们的仿真结果表明性能优势。

Precise indoor localization remains a challenging problem for a variety of essential applications. A promising approach to address this problem is to exchange radio signals between mobile agents and static physical anchors (PAs) that bounce off flat surfaces in the indoor environment. Radio frequency simultaneous localization and mapping (RF-SLAM) methods can be used to jointly estimates the time-varying location of agents as well as the static locations of the flat surfaces. Recent work on RF-SLAM methods has shown that each surface can be efficiently represented by a single master virtual anchor (MVA). The measurement model related to this MVA-based RF-SLAM method is highly nonlinear. Thus, Bayesian estimation relies on sampling-based techniques. The original MVA-based RF-SLAM method employs conventional "bootstrap" sampling. In challenging scenarios it was observed that the original method might converge to incorrect MVA positions corresponding to local maxima. In this paper, we introduce MVA-based RF-SLAM with an improved sampling technique that succeeds in the aforementioned challenging scenarios. Our simulation results demonstrate significant performance advantages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源