论文标题

双曲线空间中非紧凑型静态结构域通过正质量定理的刚性

Rigidity of non-compact static domains in hyperbolic space via positive mass theorems

论文作者

Almaraz, Sergio, de Lima, Levi Lopes

论文摘要

我们挑出一个静态概念,该概念适用于双曲线空间中的任何域,其边界是一个完全脐带的超出表面。对于(时间对称的)初始数据集,以无穷大为模型的任何一个示例,我们在自然优势能量条件下(无论是内部和边界)中的旋转类别中的正质定理而证明,刚性的刚性较高的效果较低的效果较低的效果,该效果较低,因此稳固的效果均构成了一定的效果。我们方法中的一个关键因素是考虑旋转器和MIT袋边界条件之间插值的椭圆形边界条件家族。

We single out a notion of staticity which applies to any domain in hyperbolic space whose boundary is a non-compact totally umbilical hypersurface. For (time-symmetric) initial data sets modeled at infinity on any of these latter examples, we formulate and prove a positive mass theorem in the spin category under natural dominant energy conditions (both in the interior and along the boundary) whose rigidity statement retrieves, among other things, a sharper version of a recent result by Souam to the effect that no such hypersurface admits a compactly supported deformation keeping the original lower bound on the mean curvature. A key ingredient in our approach is the consideration of a family of elliptic boundary conditions on spinors interpolating between chirality and MIT bag boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源