论文标题
使用局部结构对多个QPU的量子电路优化
Quantum circuit optimization for multiple QPUs using local structure
论文作者
论文摘要
量子位的互连集群将是扩大未来量子计算机的重要组成部分。量子处理单元(QPU)之间的操作通常比单个QPU中的操作要慢,更昂贵,因此必须仔细管理互连的用法。这与在经典的多CPU机器中管理共享的缓存或内存的需求非常相似。但是,与经典群集不同,量子数据受到无关定理的约束,这需要重新思考缓存相干性策略。在这里,我们考虑了使用EPR介导的远程门和簇之间的传送量的简单策略。至关重要的是,我们在编译时开发优化,以利用量子电路中的本地结构,以最大程度地减少运行时集群间操作。我们对现有的量子汇编和优化例程进行基准测试方法,并发现电路深度和互连用法的显着改善。
Interconnecting clusters of qubits will be an essential element of scaling up future quantum computers. Operations between quantum processing units (QPUs) are usually significantly slower and costlier than those within a single QPU, so usage of the interconnect must be carefully managed. This is loosely analogous to the need to manage shared caches or memory in classical multi-CPU machines. Unlike classical clusters, however, quantum data is subject to the no-cloning theorem, which necessitates a rethinking of cache coherency strategies. Here, we consider a simple strategy of using EPR-mediated remote gates and teleporting qubits between clusters as necessary. Crucially, we develop optimizations at compile-time that leverage local structure in a quantum circuit, so as to minimize inter-cluster operations at runtime. We benchmark our approach against existing quantum compilation and optimization routines, and find significant improvements in circuit depth and interconnect usage.