论文标题

统计网络同构

Statistical network isomorphism

论文作者

Miasnikof, Pierre, Shestopaloff, Alexander Y., Bravo, Cristián, Lawryshyn, Yuri

论文摘要

图同构是一个没有已知多项式时间解的问题。然而,在许多领域,例如图像识别,生物学,化学,计算机和社交网络等许多领域,评估两个或多个网络之间的相似性是一项关键任务。此外,相似性问题通常更为笼统,其答案比更严格的同构问题更广泛地适用。在本文中,我们为以下问题提供统计答案:a){\``网络$ g_1 $ and $ g_2 $类似?我们的比较始于每个图将其转换为一个全对距离矩阵。我们的节点节点距离Jaccard距离已被证明可以很好地反映该图的连接结构。然后,我们将这些距离建模为概率分布。最后,我们使用良好的统计工具来评估概率分布(DIS)相似性方面的相似性。该比较过程旨在检测连通性结构的(DIS)相似性,而不是易于观察到的图形特征,例如学位,边缘计数或密度。我们验证了我们的假设,即可以使用几个合成和现实世界图可以通过其节点节点距离分布进行有意义地汇总图形并进行比较。经验结果证明了其比较技术的有效性和准确性。

Graph isomorphism is a problem for which there is no known polynomial-time solution. Nevertheless, assessing (dis)similarity between two or more networks is a key task in many areas, such as image recognition, biology, chemistry, computer and social networks. Moreover, questions of similarity are typically more general and their answers more widely applicable than the more restrictive isomorphism question. In this article, we offer a statistical answer to the following questions: a) {\it ``Are networks $G_1$ and $G_2$ similar?''}, b) {\it ``How different are the networks $G_1$ and $G_2$?''} and c) {\it ``Is $G_3$ more similar to $G_1$ or $G_2$?''}. Our comparisons begin with the transformation of each graph into an all-pairs distance matrix. Our node-node distance, Jaccard distance, has been shown to offer a good reflection of the graph's connectivity structure. We then model these distances as probability distributions. Finally, we use well-established statistical tools to gauge the (dis)similarities in terms of probability distribution (dis)similarity. This comparison procedure aims to detect (dis)similarities in connectivity structure, not in easily observable graph characteristics, such as degrees, edge counts or density. We validate our hypothesis that graphs can be meaningfully summarized and compared via their node-node distance distributions, using several synthetic and real-world graphs. Empirical results demonstrate its validity and the accuracy of our comparison technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源