论文标题
自我引用的Terahertz半导体双弹药源
Self-Referenced Terahertz Semiconductor Dual-Comb Sources
论文作者
论文摘要
双弯曲源在重复频率上使用两个频率梳子略有差异,在高精度光谱,成像,范围,范围,通信等方面显示出独特的优势。在Terahertz(THZ)频率范围内,电动泵送的量子级联激光仪(QCL)提供了与Compact dual-Chip chip chip chip的可能性。尽管通过锁定双弯曲线之一的相位稳定,尽管双重弯道线的一条双重弯曲源的主动稳定是证明了所有双弯曲线的完整稳定性,但仍然具有挑战性。在这里,我们提出了一种自我参考方法,以在纯THZ QCL平台上获得完全稳定的双弯曲信号。在不使用任何外部锁定组件的情况下,我们滤除了一条双弯曲线,并用整个双重轰炸信号对其进行击败,从而消除了公共载波偏移频率噪声并降低了双弯曲重复频率噪声。在实验上证明,自我参考技术可以显着提高双弯曲信号的长期稳定性。通过实施自我参考技术,获得了``Maxhold''线宽的记录(60 s持续时间),而没有自我参考,双弯曲线显示了``最大的最大范围''最大线宽为2 MHz(15 s时间持续时间)。该方法提供了提高THZ QCL双重炸弹源的长期稳定性的最简单方法,可以进一步用于高精度测量。
Employing two frequency combs with a slight difference in repetition frequencies, the dual-comb source shows unique advantages in high precision spectroscopy, imaging, ranging, communications, etc. In the terahertz (THz) frequency range, the electrically pumped quantum cascade laser (QCL) offers the possibility of realizing the compact dual-comb source due to its semiconductor-based chip-scale configuration. Although the active stabilization of a THz QCL dual-comb source was demonstrated by phase locking one of the dual-comb lines, the full stabilization of all dual-comb lines is still challenging. Here, we propose a self-reference method to obtain a fully stabilized dual-comb signal on a pure THz QCL platform. Without using any external locking components, we filter out one dual-comb line and beat it with the whole dual-comb signal, which eliminates the common carrier offset frequency noise and reduces the dual-comb repetition frequency noise. It is experimentally demonstrated that the self-reference technique can significantly improve the long-term stability of the dual-comb signal. A record of the ``maxhold" linewidth of 14.8 kHz (60 s time duration) is obtained by implementing the self-reference technique, while without the self-reference the dual-comb lines show a ``maxhold" linewidth of 2 MHz (15 s time duration). The method provides the simplest way to improve the long-term stability of THz QCL dual-comb sources, which can be further adopted for high precision measurements.