论文标题

针对学习的系统的分层类似HAZOP的安全分析

A Hierarchical HAZOP-Like Safety Analysis for Learning-Enabled Systems

论文作者

Qi, Yi, Conmy, Philippa Ryan, Huang, Wei, Zhao, Xingyu, Huang, Xiaowei

论文摘要

危害和可操作性分析(HAZOP)是一种强大的安全分析技术,在工业过程控制领域具有悠久的历史。随着网络物理系统中机器学习(ML)组件的越来越多的使用 - 如此称为支持学习的系统(少),最近有一种将类似Hazop的分析应用于更少的趋势。虽然它显示出保留足够和系统的安全性分析能力的巨大潜力,但ML的新型特征提出了新的技术挑战,需要对传统的Hazop技术进行改造。在这方面,我们提出了一种新的分层榛树般的方法,以减少山丘。为了应对较少的复杂性,Hills首先是通过将整个系统分为三个层次来“分裂和征服”,然后在每个层面上进行Hazop,以识别(潜在的)危害,原因,安全威胁和缓解措施(带有新的节点和指导单词)。最后,Hills试图通过定性和定量方法将因果关系与三个层次内和跨三个层次之间的因果关系联系起来。我们通过对自动水下车辆的案例研究进行了研究和说明山丘的实用性,并讨论了对现实世界应用的假设和扩展。山是第一次像Hazop一样尝试的较少的尝试,即明确考虑ML内部行为及其与其他组件的相互作用,不仅揭示了更少进行安全分析的固有困难,而且还表现出了应对它们的良好潜力。

Hazard and Operability Analysis (HAZOP) is a powerful safety analysis technique with a long history in industrial process control domain. With the increasing use of Machine Learning (ML) components in cyber physical systems--so called Learning-Enabled Systems (LESs), there is a recent trend of applying HAZOP-like analysis to LESs. While it shows a great potential to reserve the capability of doing sufficient and systematic safety analysis, there are new technical challenges raised by the novel characteristics of ML that require retrofit of the conventional HAZOP technique. In this regard, we present a new Hierarchical HAZOP-Like method for LESs (HILLS). To deal with the complexity of LESs, HILLS first does "divide and conquer" by stratifying the whole system into three levels, and then proceeds HAZOP on each level to identify (latent-)hazards, causes, security threats and mitigation (with new nodes and guide words). Finally, HILLS attempts at linking and propagating the causal relationship among those identified elements within and across the three levels via both qualitative and quantitative methods. We examine and illustrate the utility of HILLS by a case study on Autonomous Underwater Vehicles, with discussions on assumptions and extensions to real-world applications. HILLS, as a first HAZOP-like attempt on LESs that explicitly considers ML internal behaviours and its interactions with other components, not only uncovers the inherent difficulties of doing safety analysis for LESs, but also demonstrates a good potential to tackle them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源