论文标题

医学几何形状的深活动潜在表面

Deep Active Latent Surfaces for Medical Geometries

论文作者

Jensen, Patrick M., Wickramasinghe, Udaranga, Dahl, Anders B., Fua, Pascal, Dahl, Vedrana A.

论文摘要

长期以来,众所周知,在从嘈杂或不完整数据中重建3D形状时,形状先验是有效的。当使用基于深度学习的形状表示时,这通常涉及学习潜在表示,该表示可以是单个全局向量的形式,也可以是多个局部向量的形式。后者可以更灵活,但容易过度拟合。在本文中,我们主张一种混合方法,该方法以3D网格的形状与每个顶点的单独的潜在向量表示形状。在训练过程中,潜在向量被限制为具有相同的值,从而避免过度拟合。为了推断,潜在向量是独立更新的,同时施加了空间正规化约束。我们表明,这赋予了我们灵活性和概括功能,我们在几个医学图像处理任务上证明了这一点。

Shape priors have long been known to be effective when reconstructing 3D shapes from noisy or incomplete data. When using a deep-learning based shape representation, this often involves learning a latent representation, which can be either in the form of a single global vector or of multiple local ones. The latter allows more flexibility but is prone to overfitting. In this paper, we advocate a hybrid approach representing shapes in terms of 3D meshes with a separate latent vector at each vertex. During training the latent vectors are constrained to have the same value, which avoids overfitting. For inference, the latent vectors are updated independently while imposing spatial regularization constraints. We show that this gives us both flexibility and generalization capabilities, which we demonstrate on several medical image processing tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源