论文标题

sface:使用合成数据对隐私友好且准确的面部识别

SFace: Privacy-friendly and Accurate Face Recognition using Synthetic Data

论文作者

Boutros, Fadi, Huber, Marco, Siebke, Patrick, Rieber, Tim, Damer, Naser

论文摘要

文献中提出的最新深层识别模型利用了大规模的公共数据集,例如MS-CELEB-1M和VGGFACE2,用于培训非常深的神经网络,从而在主流基准上实现了最先进的表现。最近,由于可靠的隐私和道德问题,许多这些数据集(例如MS-CELEB-1M和VGGFACE2)被撤回。这激发了这项工作提出和调查使用隐私友好的合成生成的面部数据集来训练面部识别模型的可行性。为此,我们利用类别条件生成对抗网络来生成类标记的合成面部图像,即Sface。为了解决使用此类数据训练面部识别模型的隐私方面,我们提供了有关合成数据集与用于训练生成模型的原始真实数据集之间的身份关系的广泛评估实验。我们报告的评估证明,将真实数据集的身份与合成数据集中的同一类标签相关联是不可能的。我们还建议使用三种不同的学习策略,多级分类,无标签的知识转移以及多级分类和知识转移的合并学习,对我们的隐私友好数据集,SFACE培训面部识别。报告的五个真实面部基准的评估结果表明,对隐私友好的合成数据集具有很高的潜力,可用于训练面部识别模型,例如,使用多级典型的分类实现LFW的验证精度为91.87 \%,并使用合并的学习策略实现了99.13 \%的验证精度。

Recent deep face recognition models proposed in the literature utilized large-scale public datasets such as MS-Celeb-1M and VGGFace2 for training very deep neural networks, achieving state-of-the-art performance on mainstream benchmarks. Recently, many of these datasets, e.g., MS-Celeb-1M and VGGFace2, are retracted due to credible privacy and ethical concerns. This motivates this work to propose and investigate the feasibility of using a privacy-friendly synthetically generated face dataset to train face recognition models. Towards this end, we utilize a class-conditional generative adversarial network to generate class-labeled synthetic face images, namely SFace. To address the privacy aspect of using such data to train a face recognition model, we provide extensive evaluation experiments on the identity relation between the synthetic dataset and the original authentic dataset used to train the generative model. Our reported evaluation proved that associating an identity of the authentic dataset to one with the same class label in the synthetic dataset is hardly possible. We also propose to train face recognition on our privacy-friendly dataset, SFace, using three different learning strategies, multi-class classification, label-free knowledge transfer, and combined learning of multi-class classification and knowledge transfer. The reported evaluation results on five authentic face benchmarks demonstrated that the privacy-friendly synthetic dataset has high potential to be used for training face recognition models, achieving, for example, a verification accuracy of 91.87\% on LFW using multi-class classification and 99.13\% using the combined learning strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源