论文标题
工作的正确工具:机器学习中的开源审核工具
The Right Tool for the Job: Open-Source Auditing Tools in Machine Learning
论文作者
论文摘要
近年来,关于机器学习,AI伦理和算法审核的公平性的讨论增加了。许多实体已经开发了框架指南,以建立公平和问责制的基线标题。但是,尽管讨论增加和多个框架,但在实践中仍然很难执行算法和数据审核。许多开源审核工具都可以使用,但是用户并不总是知道这些工具,它们对它们有用或如何访问它们。模型审核和评估并不经常强调机器学习的技能。也有法律原因积极地采用这些工具,这些工具超出了对机器学习中更公平的渴望。在我们高度联系的全球社会中,存在着积极的公众感知和善意社会问题。对这些工具的更高认识以及积极利用它们的原因可能对AI和机器学习产品的程序员,数据科学家,工程师,研究人员,用户和消费者的整个连续性有所帮助。对于每个人而言,重要的是要更好地了解输入和输出差异,它们的发生方式以及在机器和深度学习中可以促进命运(公平,问责制,透明和道德)的能力。自由访问开源审计工具的能力消除了在机器学习的最基本水平上公平评估的障碍。本文旨在强化迫切需要实际使用这些工具,并为此提供动力。本文突出显示的示例性工具是带有软件或代码碱存储库的开源工具,可以立即在全球任何人使用。
In recent years, discussions about fairness in machine learning, AI ethics and algorithm audits have increased. Many entities have developed framework guidance to establish a baseline rubric for fairness and accountability. However, in spite of increased discussions and multiple frameworks, algorithm and data auditing still remain difficult to execute in practice. Many open-source auditing tools are available, but users aren't always aware of the tools, what they are useful for, or how to access them. Model auditing and evaluation are not frequently emphasized skills in machine learning. There are also legal reasons for the proactive adoption of these tools that extend beyond the desire for greater fairness in machine learning. There are positive social issues of public perception and goodwill that matter in our highly connected global society. Greater awareness of these tools and the reasons for actively utilizing them may be helpful to the entire continuum of programmers, data scientists, engineers, researchers, users and consumers of AI and machine learning products. It is important for everyone to better understand the input and output differentials, how they are occurring, and what can be done to promote FATE (fairness, accountability, transparency, and ethics) in machine- and deep learning. The ability to freely access open-source auditing tools removes barriers to fairness assessment at the most basic levels of machine learning. This paper aims to reinforce the urgent need to actually use these tools and provides motivations for doing so. The exemplary tools highlighted herein are open-source with software or code-base repositories available that can be used immediately by anyone worldwide.