论文标题

SCIM:与开放世界语义场景的同时聚类,推理和映射

SCIM: Simultaneous Clustering, Inference, and Mapping for Open-World Semantic Scene Understanding

论文作者

Blum, Hermann, Müller, Marcus G., Gawel, Abel, Siegwart, Roland, Cadena, Cesar

论文摘要

为了在人类环境中运作,机器人的语义感知必须克服开放世界的挑战,例如新颖的对象和域间隙。因此,在此类环境中的自主部署要求机器人在不监督的情况下更新其知识和学习。我们研究机器人如何在探索未知环境时如何自主发现新颖的语义类别并提高已知类别的准确性。为此,我们开发了一个通用框架来映射和聚类,然后使用该框架来生成一个自我监督的学习信号以更新语义分割模型。特别是,我们展示了如何在部署过程中优化聚类参数,并且与先前的工作相比,多种观察方式的融合可以改善新颖的对象发现。可以在https://github.com/hermannsblum/scim上找到模型,数据和实现

In order to operate in human environments, a robot's semantic perception has to overcome open-world challenges such as novel objects and domain gaps. Autonomous deployment to such environments therefore requires robots to update their knowledge and learn without supervision. We investigate how a robot can autonomously discover novel semantic classes and improve accuracy on known classes when exploring an unknown environment. To this end, we develop a general framework for mapping and clustering that we then use to generate a self-supervised learning signal to update a semantic segmentation model. In particular, we show how clustering parameters can be optimized during deployment and that fusion of multiple observation modalities improves novel object discovery compared to prior work. Models, data, and implementations can be found at https://github.com/hermannsblum/scim

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源