论文标题

通过径向梁采样学习连续旋转规范化

Learning Continuous Rotation Canonicalization with Radial Beam Sampling

论文作者

Schmidt, Johann, Stober, Sebastian

论文摘要

几乎所有艺术视觉模型的状态都对图像旋转敏感。现有方法通常通过使用增强的培训数据来学习伪抗体,以弥补缺失的归纳偏见。除了资源要求数据通货膨胀过程之外,预测通常会概括。卷积神经网络固有的电感偏见允许通过作用于像素网格的水平和垂直轴的内核进行翻译等效。但是,这种感应性偏差不允许旋转模棱两可。我们提出了一种径向光束采样策略,以及在这些梁上运行的径向内核,以固有地融合了中心旋转协方差。加上角度距离损耗,我们提出了一个基于径向光束的图像典型化模型,即短BIC。我们的模型允许最大的连续角度回归,并规范化了任意的中心旋转输入图像。作为一个预处理模型,这可以通过模型 - 敏感敏感的下游预测来实现旋转不变的视觉管道。我们表明,我们的端到端训练的角度回归器能够预测几个视觉数据集的连续旋转角度,即FashionMnist,CIFAR10,COIL100和LFW。

Nearly all state of the art vision models are sensitive to image rotations. Existing methods often compensate for missing inductive biases by using augmented training data to learn pseudo-invariances. Alongside the resource demanding data inflation process, predictions often poorly generalize. The inductive biases inherent to convolutional neural networks allow for translation equivariance through kernels acting parallely to the horizontal and vertical axes of the pixel grid. This inductive bias, however, does not allow for rotation equivariance. We propose a radial beam sampling strategy along with radial kernels operating on these beams to inherently incorporate center-rotation covariance. Together with an angle distance loss, we present a radial beam-based image canonicalization model, short BIC. Our model allows for maximal continuous angle regression and canonicalizes arbitrary center-rotated input images. As a pre-processing model, this enables rotation-invariant vision pipelines with model-agnostic rotation-sensitive downstream predictions. We show that our end-to-end trained angle regressor is able to predict continuous rotation angles on several vision datasets, i.e. FashionMNIST, CIFAR10, COIL100, and LFW.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源