论文标题

尖头的Hopf代数超过具有非简单标准编织的非阿您群体

Pointed Hopf algebras over non-abelian groups with non-simple standard braidings

论文作者

Angiono, Iván, Lentner, Simon, Sanmarco, Guillermo

论文摘要

我们构建有限维的HOPF代数,其珊瑚色是Abelian群体中心扩展的组代数。他们属于与半圣经代数相关的家庭,以及Dynkin图的自动形态。相反,我们表明的是,每个有限维尖的霍普夫代数都超过了一个非亚伯群体,其非简单的无限无限编织至少为4个形式。 我们遵循Andruskiewitsch的提升方法的步骤。我们的起点是将有限维尼科尔斯代数分类比heckenberger撰写的非亚洲群体 - vendramin,其中包括低级例外和较大的等级家庭。我们证明,大型家族是由第二作者建立的尼科尔代数的旋转曲折作为cartan类型的尼科尔斯代数的折叠,而不是外部自动形态。这使我们能够对大型家族进行统一的谎言理论描述,并在第一学位上产生并建造升降机。我们还表明,每个举重都是使用发电机的明确表示和尼科尔代数的关系的明确表示,对相应的珊瑚分级Hopf代数的共生变形。 在张量类别的水平上,我们通过一组图表自动形态构建了量子组的表示类别的分级扩展家庭。

We construct finite-dimensional Hopf algebras whose coradical is the group algebra of a central extension of an abelian group. They fall into families associated to a semisimple Lie algebra together with a Dynkin diagram automorphism. We show conversely that every finite-dimensional pointed Hopf algebra over a non-abelian group with non-simple infinitesimal braiding of rank at least 4 is of this form. We follow the steps of the Lifting Method by Andruskiewitsch--Schneider. Our starting point is the classification of finite-dimensional Nichols algebras over non-abelian groups by Heckenberger--Vendramin, which consist of low rank exceptions and large rank families. We prove that the large rank families are cocycle twists of Nichols algebras constructed by the second author as foldings of Nichols algebras of Cartan type over abelian groups by outer automorphisms. This enables us to give uniform Lie-theoretic descriptions of the large rank families, prove generation in degree one and construct liftings. We also show that every lifting is a cocycle deformation of the corresponding coradically graded Hopf algebra using an explicit presentation by generators and relations of the Nichols algebra. On the level of tensor categories, we construct families of graded extensions of the representation category of a quantum group by a group of diagram automorphism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源