论文标题
AMDS符号对代码来自重复循环代码
AMDS Symbol-Pair Codes from Repeated-Root Cyclic Codes
论文作者
论文摘要
提出了符号对代码,以防止符号对读取通道中的配对。最小符号对距离在确定符号对代码的错误校正功能方面具有重要意义。符号对编码理论中的中央主题之一是符号对代码的结构最大,最小对距离。最大距离可分离(MD)和几乎最大的距离可分离(AMDS)符号代码分别对单胎结合的最佳和优化。在本文中,通过重复的循环代码明确构建了六类AMDS符号对代码,并且一类此类代码的长度无限,最小符号对距离可以达到$ 13 $。
Symbol-pair codes are proposed to guard against pair-errors in symbol-pair read channels. The minimum symbol-pair distance is of significance in determining the error-correcting capability of a symbol-pair code. One of the central themes in symbol-pair coding theory is the constructions of symbol-pair codes with largest possible minimum pair distance. Maximum distance separable (MDS) and almost maximum distance separable (AMDS) symbol-pair codes are optimal and sub-optimal regarding to the Singleton bound, respectively. In this paper, six new classes of AMDS symbol-pair codes are explicitly constructed through repeated-root cyclic codes and one class of such codes has unbounded lengths and the minimum symbol-pair distance can reach $13$.