论文标题
事件触发和分布式模型预测控制无人机群中保证碰撞的碰撞
Event-triggered and distributed model predictive control for guaranteed collision avoidance in UAV swarms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Distributed model predictive control (DMPC) is often used to tackle path planning for unmanned aerial vehicle (UAV) swarms. However, it requires considerable computations on-board the UAV, leading to increased weight and power consumption. In this work, we propose to offload path planning computations to multiple ground-based computation units. As simultaneously communicating and recomputing all trajectories is not feasible for a large swarm with tight timing requirements, we develop a novel event-triggered DMPC that selects a subset of most relevant UAV trajectories to be replanned. The resulting architecture reduces UAV weight and power consumption, while the active redundancy provides robustness against computation unit failures. Moreover, the DMPC guarantees feasible and collision-free trajectories for UAVs with linear dynamics. In simulations, we demonstrate that our method can reliably plan trajectories, while saving 60% of network traffic and required computational power. Hardware-in-the-loop experiments show that it is suitable to control real quadcopter swarms.