论文标题

利用RGB-D数据使用跨模式环境挖掘进行玻璃表面检测

Leveraging RGB-D Data with Cross-Modal Context Mining for Glass Surface Detection

论文作者

Lin, Jiaying, Yeung, Yuen-Hei, Ye, Shuquan, Lau, Rynson W. H.

论文摘要

随着现代建筑倾向于使用大量玻璃面板,玻璃表面变得越来越无处不在。但是,这对自主系统(例如机器人,自动驾驶汽车和无人机)的操作构成了重大挑战,因为这些玻璃面板可能会成为导航的透明障碍。现有的作品试图利用各种提示,包括玻璃边界环境或反射,作为先验。但是,它们都是基于输入RGB图像的。我们观察到,3D深度传感器通过玻璃表面的传输通常会在深度图中产生空白区域,这可以提供其他见解,以补充RGB图像特征以进行玻璃表面检测。在这项工作中,我们首先提出了一个大规模的RGB-D玻璃表面检测数据集,\ textit {RGB-D GSD},以进行严格的实验和未来的研究。它包含3,009张图像,并配上精确的注释,提供各种现实的RGB-D玻璃表面类别。然后,我们提出了一个新型的玻璃表面检测框架,将RGB和深度信息结合在一起,以及两个新型模块:一个跨模式上下文挖掘(CCM)模块,以适应性地从RGB和深度信息中学习个体和相互的上下文特征,以及深度损坏的注意力(DAA)模块(DAA),以明确地揭示了玻璃深度的范围,从而有助于实现玻璃深度的范围。实验结果表明,我们提出的模型优于最先进的方法。

Glass surfaces are becoming increasingly ubiquitous as modern buildings tend to use a lot of glass panels. This, however, poses substantial challenges to the operations of autonomous systems such as robots, self-driving cars, and drones, as these glass panels can become transparent obstacles to navigation. Existing works attempt to exploit various cues, including glass boundary context or reflections, as priors. However, they are all based on input RGB images. We observe that the transmission of 3D depth sensor light through glass surfaces often produces blank regions in the depth maps, which can offer additional insights to complement the RGB image features for glass surface detection. In this work, we first propose a large-scale RGB-D glass surface detection dataset, \textit{RGB-D GSD}, for rigorous experiments and future research. It contains 3,009 images, paired with precise annotations, offering a wide range of real-world RGB-D glass surface categories. We then propose a novel glass surface detection framework combining RGB and depth information, with two novel modules: a cross-modal context mining (CCM) module to adaptively learn individual and mutual context features from RGB and depth information, and a depth-missing aware attention (DAA) module to explicitly exploit spatial locations where missing depths occur to help detect the presence of glass surfaces. Experimental results show that our proposed model outperforms state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源