论文标题
截短的wigner近似下的扰动理论揭示了系统 - 环境纠缠的形成如何驱动量子反向
Perturbation theory under the truncated Wigner approximation reveals how system-environment entanglement formation drives quantum decoherence
论文作者
论文摘要
量子分解是由于与环境的相互作用而导致离散量子系统中简单相位关系的消失。对于许多应用程序,问题不一定是如何避免(不可避免的)系统环境相互作用,而是如何设计尽管存在这种相互作用,但如何设计最佳地保留系统相关的环境。系统环境纠缠的形成是破坏性的主要驱动机制,对此过程的详细理解可以为策略提供最佳保护的策略。这需要可扩展,灵活和系统地改进的量子动力学方法,以保留有关环境纠缠属性的详细信息,但是当前的方法很少提供这种功能的组合。在这里,我们通过引入一个理论框架来满足这种需求,其中我们将截短的Wigner近似与标准时间依赖性扰动理论结合在一起,允许计算组合系统 - 环境Hilbert Space中运算符的期望值。我们通过将其应用于Spin-Boson模型(代表Qubits和简单的供体 - 受体系统的代表)来证明该框架的实用性。对于此模型,我们的框架提供了对期望值的扰动贡献的分析描述。我们监视零温度下的量子分解如何伴随着纠缠的形成,并与个体的环境自由度。基于这种纠缠行为,我们发现对低频环境模式的选择性抑制对于缓解量子偏压特别有效。
Quantum decoherence is the disappearance of simple phase relations within a discrete quantum system as a result of interactions with an environment. For many applications, the question is not necessarily how to avoid (inevitable) system-environment interactions, but rather how to design environments that optimally preserve a system's phase relations in spite of such interactions. The formation of system-environment entanglement is a major driving mechanism for decoherence, and a detailed understanding of this process could inform strategies for conserving coherence optimally. This requires scalable, flexible, and systematically improvable quantum dynamical methods that retain detailed information about the entanglement properties of the environment, yet very few current methods offer this combination of features. Here, we address this need by introducing a theoretical framework wherein we combine the truncated Wigner approximation with standard time-dependent perturbation theory allowing for computing expectation values of operators in the combined system-environment Hilbert space. We demonstrate the utility of this framework by applying it to the spin-boson model, representative of qubits and simple donor-acceptor systems. For this model, our framework provides an analytical description of perturbative contributions to expectation values. We monitor how quantum decoherence at zero temperature is accompanied by entanglement formation with individual environmental degrees of freedom. Based on this entanglement behavior, we find that the selective suppression of low-frequency environmental modes is particularly effective for mitigating quantum decoherence.