论文标题

Grassmann歧管上的回归树,用于调整还原模型

Regression Trees on Grassmann Manifold for Adapting Reduced-Order Models

论文作者

Liu, Xiao, Liu, Xinchao

论文摘要

低维和计算较低的降低订购模型(ROM)已被广泛用于捕获高维系统的主要行为。使用众所周知的正交分解(POD)可以通过将全阶模型投影到以模态基跨模式跨越的子空间(从实验,模拟或观察性数据,即训练数据)中学到的子空间来获得ROM。但是,最佳基础可以随参数设置而变化。当使用从训练数据获得的POD基础构建的ROM应用于新的参数设置时,该模型通常缺乏鲁棒性,而不是在设计,控制和其他实时操作问题中的参数变化。本文提议在格拉曼(Grassmann)歧管上使用回归树,以了解跨越了投影全阶模型的低维子空间的参数和POD碱基之间的映射。在以下事实的激励下:通过豆荚跨越的子空间可以看作是格拉斯曼歧管中的一个点,我们建议通过反复拆分树节点来生长一棵树,以最大化两个子空间之间的riemannian距离,这两个子空间在左边和右女儿nodes上被预测的pod基地跨越了。提出了五个数值示例,以全面证明所提出的方法的性能,并将基于树的方法与现有的插值方法进行比较,以进行POD和使用全局POD。结果表明,所提出的基于树的方法能够在参数和POD碱基之间建立映射,从而使ROM适应新参数。

Low dimensional and computationally less expensive Reduced-Order Models (ROMs) have been widely used to capture the dominant behaviors of high-dimensional systems. A ROM can be obtained, using the well-known Proper Orthogonal Decomposition (POD), by projecting the full-order model to a subspace spanned by modal basis modes which are learned from experimental, simulated or observational data, i.e., training data. However, the optimal basis can change with the parameter settings. When a ROM, constructed using the POD basis obtained from training data, is applied to new parameter settings, the model often lacks robustness against the change of parameters in design, control, and other real-time operation problems. This paper proposes to use regression trees on Grassmann Manifold to learn the mapping between parameters and POD bases that span the low-dimensional subspaces onto which full-order models are projected. Motivated by the fact that a subspace spanned by a POD basis can be viewed as a point in the Grassmann manifold, we propose to grow a tree by repeatedly splitting the tree node to maximize the Riemannian distance between the two subspaces spanned by the predicted POD bases on the left and right daughter nodes. Five numerical examples are presented to comprehensively demonstrate the performance of the proposed method, and compare the proposed tree-based method to the existing interpolation method for POD basis and the use of global POD basis. The results show that the proposed tree-based method is capable of establishing the mapping between parameters and POD bases, and thus adapt ROMs for new parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源