论文标题

重力和自然的其他基本力量的统一量化

A unified quantization of gravity and other fundamental forces of nature

论文作者

Gerhardt, Claus

论文摘要

我们量化了重力与杨利尔和纺纱场的相互作用,因此提供了一种量子理论,其中包含了所有四种自然的基本力。让我们\ ann {as}缩写标准模型的空间汉密尔顿功能通过$ h_ {sm} $和hamilton的重力功能$ h_g $。与基本空间$ \ socc = \ r [n] $一起在光纤束$ e $中工作,其中光纤元素是riemannian指标,我们可以以$ h_g+h_g+h_g+h_g+h_g+h_g+h_g+t^{ - \ frac23} \ tilde h_ h_ n = $ n = $ h_g+h_g+h_g+h_g+h_g+h_g+h_g+h_g+h_g+t^$ n = $ h_ {sm} $取决于指标$ \ s_ {ij} $满足$ \ det {\ s_ {ij}} = 1 $。在量化过程中,我们对常规$ \ s_ {ij} $量化$ h_g $,但$ \ tilde h_ {sm} $仅用于$ \ s_ {ij} = \ de_ {ij {ij {ij {ij {ij {ij {ij {ij {ij} $。让$ v $ \ fess $ψ$是相应的汉密尔顿运营商的空间特征分布,那么,$ u =wvψ$给出了heeler-dewitt方程的解决方案$ u $,其中$ w $满足ode and ode and ode and $ u $在$(t,\ de_ de_ {ij {ij {ij})中评估。

We quantize the interaction of gravity with Yang-Mills and spinor fields, hence offering a quantum theory incorporating all four fundamental forces of nature. Let us\ann{as} abbreviate the spatial Hamilton functions of the Standard Model by $H_{SM}$ and the Hamilton function of gravity by $H_G$. Working in a fiber bundle $E$ with base space $\socc=\R[n]$, where the fiber elements are Riemannian metrics, we can express the Hamilton functions in the form $H_G+H_{SM}=H_G+t^{-\frac23}\tilde H_{SM}$ if $n=3$, where $\tilde H_{SM}$ depends on metrics $\s_{ij}$ satisfying $\det{\s_{ij}}=1$. In the quantization process, we quantize $H_G$ for general $\s_{ij}$ but $\tilde H_{SM}$ only for $\s_{ij}=\de_{ij}$ by the usual methods of QFT. Let $v$ \resp $ψ$ be the spatial eigendistributions of the respective Hamilton operators, then, the solutions $u$ of the Wheeler-DeWitt equation are given by $u=wvψ$, where $w$ satisfies an ODE and $u$ is evaluated at $(t,\de_{ij})$ in the fibers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源