论文标题

利用专家功能来对比度学习时间序列表示形式

Utilizing Expert Features for Contrastive Learning of Time-Series Representations

论文作者

Nonnenmacher, Manuel, Oldenburg, Lukas, Steinwart, Ingo, Reeb, David

论文摘要

我们提出了一种结合时间序列表示学习的专家知识的方法。我们的方法采用专家功能来代替以前的对比学习方法中常用的数据转换。我们这样做是因为时间序列数据经常源于工业或医疗领域,这些工业或医疗领域经常从域专家那里获得专家功能,而转换通常难以捉摸,对于时间序列数据。我们首先提出了有用的时间序列表示应实现的两个属性,并表明当前的表示学习方法不能确保这些属性。因此,我们设计了Expclr,这是一种基于目标的目标,它利用专家功能来鼓励两种属性来掌握的代表。最后,我们在三个现实世界中的数据集上演示了ExpCLR超过了无监督和半监督的表示学习的几种最新方法。

We present an approach that incorporates expert knowledge for time-series representation learning. Our method employs expert features to replace the commonly used data transformations in previous contrastive learning approaches. We do this since time-series data frequently stems from the industrial or medical field where expert features are often available from domain experts, while transformations are generally elusive for time-series data. We start by proposing two properties that useful time-series representations should fulfill and show that current representation learning approaches do not ensure these properties. We therefore devise ExpCLR, a novel contrastive learning approach built on an objective that utilizes expert features to encourage both properties for the learned representation. Finally, we demonstrate on three real-world time-series datasets that ExpCLR surpasses several state-of-the-art methods for both unsupervised and semi-supervised representation learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源