论文标题
无界的汉克尔操作员和立方szegő方程的流动
Unbounded Hankel operators and the flow of the cubic Szegő equation
论文作者
论文摘要
我们证明,对于任何Hankel运算符,具有Hardy类$ H^2 $的符号的任何Hankel操作员,最大和最小的域重合。作为一个应用程序,我们证明了单位圆圈上立方szegő方程的演变流可以连续扩展到整个类$ h^2 $。
We prove that, for any Hankel operator with a symbol from the Hardy class $H^2$, the maximal and minimal domains coincide. As an application, we prove that the evolution flow of the cubic Szegő equation on the unit circle can be continuously extended to the whole class $H^2$.