论文标题
Toeplitz运营商在伯格曼空间上产生的交换Banach代数
Commutative Banach Algebras Generated by Toeplitz Operators on the Bergman Space
论文作者
论文摘要
我们介绍和研究由Toeplitz操作员产生的交换性Banach代数,其具有广义的准式假伪二氧化符号,作用在单位球上的伯格曼空间上。我们开发了这些代数的Gelfand理论,并提供了一些有关它们的结构信息。特别是,我们提供了这些代数的根本的描述。本文概括并完成了先前与具有准radial准合并符号的Toeplitz运算符相关的作品的结果。
We present and study commutative Banach algebras generated by Toeplitz operators with generalized quasi-radial pseudo-homogeneous symbols acting on the Bergman space over the unit ball. We develop the Gelfand theory of these algebras and give some structural information about them. In particular, we provide a description of the radical of these algebras. This paper generalizes and completes the results from previous works related to Toeplitz operators with quasi-radial quasi-homogeneous symbols.