论文标题

具有深层可变模型的几杆非参数学习

Few-Shot Non-Parametric Learning with Deep Latent Variable Model

论文作者

Jiang, Zhiying, Dai, Yiqin, Xin, Ji, Li, Ming, Lin, Jimmy

论文摘要

预计机器学习算法的大多数实际问题都可以通过1)未知数据分配来解决这种情况; 2)特定领域的小知识; 3)注释有限的数据集。我们通过使用潜在变量(NPC-LV)的压缩提出非参数学习,这是任何数据集的学习框架,这些数据集具有丰富的未标记数据,但很少有标签的数据。通过仅以无监督的方式训练生成模型,该框架利用数据分布来构建压缩机。使用源自kolmogorov复杂性的基于压缩机的距离度量,加上很少的标记数据,NPC-LV可以在没有进一步训练的情况下进行分类。我们表明,在低数据制度中,NPC-LV在图像分类上的所有三个数据集上都优于监督方法,甚至超过了CIFAR-10上的半监督学习方法。我们证明了如何以及何时使用负面证据较低(Nelbo)作为分类的近似压缩长度。通过揭示压缩率和分类精度之间的相关性,我们说明在NPC-LV下,生成模型的改进可以提高下游分类精度。

Most real-world problems that machine learning algorithms are expected to solve face the situation with 1) unknown data distribution; 2) little domain-specific knowledge; and 3) datasets with limited annotation. We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV), a learning framework for any dataset with abundant unlabeled data but very few labeled ones. By only training a generative model in an unsupervised way, the framework utilizes the data distribution to build a compressor. Using a compressor-based distance metric derived from Kolmogorov complexity, together with few labeled data, NPC-LV classifies without further training. We show that NPC-LV outperforms supervised methods on all three datasets on image classification in low data regime and even outperform semi-supervised learning methods on CIFAR-10. We demonstrate how and when negative evidence lowerbound (nELBO) can be used as an approximate compressed length for classification. By revealing the correlation between compression rate and classification accuracy, we illustrate that under NPC-LV, the improvement of generative models can enhance downstream classification accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源