论文标题
学习最大的利润
Learning Towards the Largest Margins
论文作者
论文摘要
基于深度学习的分类中特征表示的主要挑战之一是设计表现出强大歧视力的适当损失功能。经典的软马克斯损失并不能明确鼓励对特征的歧视性学习。研究的一个流行方向是将边缘纳入良好的损失中,以实施额外的课内紧凑性和阶层间可分离性,但是,这是通过启发式手段而不是严格的数学原则来开发的。在这项工作中,我们试图通过将原则优化目标提出为最大利润率来解决这一限制。具体而言,我们首先将类别的边缘定义为级别间的可分离性的度量,而样品边缘是级别的紧凑性的度量。因此,为了鼓励特征的歧视性表示,损失函数应促进类和样本的最大可能边缘。此外,我们得出了一般的边缘软磁损失,以得出现有基于边缘的损失的一般结论。该原则性框架不仅提供了新的观点来理解和解释现有的基于利润率的损失,而且还提供了新的见解,可以指导新工具的设计,包括样本保证金正则化和均衡案例的最大保证金损失,以及零中的零饮食案例,用于较低的案例。实验结果证明了我们的策略对各种任务的有效性,包括视觉分类,分类不平衡,重新识别和面部验证。
One of the main challenges for feature representation in deep learning-based classification is the design of appropriate loss functions that exhibit strong discriminative power. The classical softmax loss does not explicitly encourage discriminative learning of features. A popular direction of research is to incorporate margins in well-established losses in order to enforce extra intra-class compactness and inter-class separability, which, however, were developed through heuristic means, as opposed to rigorous mathematical principles. In this work, we attempt to address this limitation by formulating the principled optimization objective as learning towards the largest margins. Specifically, we firstly define the class margin as the measure of inter-class separability, and the sample margin as the measure of intra-class compactness. Accordingly, to encourage discriminative representation of features, the loss function should promote the largest possible margins for both classes and samples. Furthermore, we derive a generalized margin softmax loss to draw general conclusions for the existing margin-based losses. Not only does this principled framework offer new perspectives to understand and interpret existing margin-based losses, but it also provides new insights that can guide the design of new tools, including sample margin regularization and largest margin softmax loss for the class-balanced case, and zero-centroid regularization for the class-imbalanced case. Experimental results demonstrate the effectiveness of our strategy on a variety of tasks, including visual classification, imbalanced classification, person re-identification, and face verification.