论文标题

有限群体的会员问题

Membership Problems in Finite Groups

论文作者

Lohrey, Markus, Rosowski, Andreas, Zetzsche, Georg

论文摘要

我们表明,置换组的子集总和问题,背包问题和合理子集成员资格问题是NP完整的。关于背包问题,我们为每个固定的$ n \ geq 3 $获得NP完整性,其中$ n $是背包方程中的排列数。换句话说:三个循环置换组的产品的成员资格是NP完整的。这是luks的结果,该结果指出了三个Abelian置换组产品的成员问题的NP完整性。我们还考虑了置换组中的无上下文成员资格问题,并证明它是PSPACE份数的,但对于限制的无上下文语法类别的NP组件,无循环衍生树必须具有恒定的Horton-strahler编号。我们的上限适用于黑匣子组。置换组中无上下文成员问题的结果为DFA和单个无上下文语法提供了各种交点的非空置问题的新复杂性界限。

We show that the subset sum problem, the knapsack problem and the rational subset membership problem for permutation groups are NP-complete. Concerning the knapsack problem we obtain NP-completeness for every fixed $n \geq 3$, where $n$ is the number of permutations in the knapsack equation. In other words: membership in products of three cyclic permutation groups is NP-complete. This sharpens a result of Luks, which states NP-completeness of the membership problem for products of three abelian permutation groups. We also consider the context-free membership problem in permutation groups and prove that it is PSPACE-complete but NP-complete for a restricted class of context-free grammars where acyclic derivation trees must have constant Horton-Strahler number. Our upper bounds hold for black box groups. The results for context-free membership problems in permutation groups yield new complexity bounds for various intersection non-emptiness problems for DFAs and a single context-free grammar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源