论文标题
使用多源地静止卫星遥感数据流的野火气溶胶工艺的物理信息统计建模
Physics-Informed Statistical Modeling for Wildfire Aerosols Process Using Multi-Source Geostationary Satellite Remote-Sensing Data Streams
论文作者
论文摘要
随着野火产生的大气气溶胶减少了向地球的传入太阳辐射,越来越频繁地野火会显着影响太阳能的产生。通过气溶胶光学深度(AOD)测量大气气溶胶,可以通过地球静止卫星检索和监测AOD数据流。但是,多源遥感数据流通常具有异质特征,包括不同的数据丢失率,测量误差,系统偏见等。为了准确估计和预测潜在的AOD传播过程,存在实践需求和理论利益,以提出一种具有物理知识的统计方法,以同时使用或融合,或融合多源的多种元素异质卫星远程远程远程灵感数据来对野火AOD传播进行建模。提出的方法利用光谱方法,将多源卫星数据流与控制AOD传播过程的基本对流扩散方程相结合。统计模型中包括一个偏差校正过程,以说明物理模型的偏差和傅立叶系列的截断误差。提出的方法适用于从国家海洋和大气管理局获得的加利福尼亚野火AOD数据流。提供了全面的数值示例,以证明所提出方法的预测能力和模型解释性。计算机代码已在GitHub上提供。
Increasingly frequent wildfires significantly affect solar energy production as the atmospheric aerosols generated by wildfires diminish the incoming solar radiation to the earth. Atmospheric aerosols are measured by Aerosol Optical Depth (AOD), and AOD data streams can be retrieved and monitored by geostationary satellites. However, multi-source remote-sensing data streams often present heterogeneous characteristics, including different data missing rates, measurement errors, systematic biases, and so on. To accurately estimate and predict the underlying AOD propagation process, there exist practical needs and theoretical interests to propose a physics-informed statistical approach for modeling wildfire AOD propagation by simultaneously utilizing, or fusing, multi-source heterogeneous satellite remote-sensing data streams. Leveraging a spectral approach, the proposed approach integrates multi-source satellite data streams with a fundamental advection-diffusion equation that governs the AOD propagation process. A bias correction process is included in the statistical model to account for the bias of the physics model and the truncation error of the Fourier series. The proposed approach is applied to California wildfires AOD data streams obtained from the National Oceanic and Atmospheric Administration. Comprehensive numerical examples are provided to demonstrate the predictive capabilities and model interpretability of the proposed approach. Computer code has been made available on GitHub.